
 PENETRATION TEST REPORT

@2025 CYBE - CONFIDENTIAL 1

CLIENT:

DATE:

 PENETRATION TEST REPORT

SUMMARY
1. Document Control ..3

1.a. Version Control ..3

1.b. Document Distribution ...3

1.c. Disclaimer ..3

1.d. Confidentiality Statement ..3

2. Introduction ...4

3. Scope ...4

4. Engagement Summary ...5

5. Methodology - Web Application Security Testing ...6

6. Executive Summary ...8
6.a. Vulnerable Surface ..8

6.b. Main Threats ...9

6.c. Vulnerabilities Table ...9

7. Technical Summary ..10

8. Vulnerabilities ...11
8.a. Application Prone To Mass Account Hijack Vulnerability ...11

8.b. Stored Cross Site Scripting (XSS) ...14

8.c. Application Prone To Blind SQL Injection ..16

8.d. Deletion Of Order Requests Of Other Users ...18

8.e. Account Hijacking Via Password Reset Link Poisoning ..21

8.f. MEGACORP Portal Vulnerable To Server Side Request Forgery (SSRF) ...24

8.g. Bcrypt Encrypted Credentials Being Sent As GET Request And Pass-the-Hash- like Attack 26

8.h. Session Cookie Without Secure Flag Enabled ..28

8.i. Email Flood Via Password Reset ...29

9. Conclusion ..30

10.Appendix A - Vulnerability Criteria Classification ...31

11.Appendix B - Remediation Priority Suggestion ..32

@2025 CYBE - CONFIDENTIAL 2

 PENETRATION TEST REPORT

1. Document Control

1.a. Version Control

1.b. Document Distribution

1.c. Disclaimer
This document presents a detailed description of a web application security review on behalf of
MEGACORP Ltd.
Cybe Information Security prioritized the identification of the largest possible number of defective security
controls an adversary would exploit to compromise the scope in question. Cybe recommends conducting
similar assessments on a regular basis to ensure the continued security of the controls.
As a time-boxed and best-effort exercise, the nature of penetration testing does not guarantee there are no
other security issues in the scope under assessment, or that computer intrusion will not happen in the
future. The results of this document should not be read as investment advice.

1.d. Confidentiality Statement
This document is the exclusive property of MEGACORP Ltd. and Cybe Information Security. This document
contains proprietary and confidential information. Duplication, redistribution, or use, in whole or in part, in
any form, requires the express consent of both parties.
Cybe Information Security grants the customer permission to share this document with business partners,
auditors, and regulatory agencies that request proof of penetration testing to satisfy compliance
requirements, audits, onboarding, and other processes that may require proof of pentest.

@2025 CYBE - CONFIDENTIAL 3

AUTHOR DELIVERY DATE PAGES VERSION STATUS

Alan Turing 21/11/2025 45 0.7 First draft

Ada Lovelace 23/11/2025 45 0.8 Technical QA

Donald Knuth 24/11/2025 45 0.9 QA

Alan Turing 25/11/2025 45 1.0 Final

NAME TITLE ORGANIZATION

Alan Turing Lead Security Engineer Cybe Information Security

Ada Lovelace Security Engineer Cybe Information Security

Donald Knuth Project Manager Cybe Information Security

Dade Murphy Director of Information Security MEGACORP Ltd.

Kate Libby Information Security Manager MEGACORP Ltd.

 PENETRATION TEST REPORT

2. Introduction

This document presents the results of a Web Application Security Testing for MEGACORP Ltd. This
engagement aimed to identify security vulnerabilities that could negatively affect the systems under the
scope, the data they handle, and consequently the business. Cybe Information Security simulated in a
systematic way, attacks that were specifically tailored for the engagement’s scope to test the resilience
against real-life attack scenarios.

The main objectives are presented below:

The analysis focused on vulnerabilities especially related to implementation, and on issues caused by
architectural or design errors.
For each vulnerability discovered during the assessment, Cybe Information Security attributed a risk
severity rating and, whenever possible, validated the existence of the vulnerability with a working exploit
code. The issues’ severity classification is based on the potential it presents to provide means for fraud,
data leakage, and other harmful events that may bring a direct adverse impact to the business.
A remediation priority suggestion can be found in Appendix B of this document.

3. Scope

The applications MEGACORP web platform, management backend, API, and their supporting infrastructure
were subjected to a security-focused test.

The scope of the assessment comprised of:

@2025 CYBE - CONFIDENTIAL 4

URL IP

https://web.megacorp.ltd 5.6.7.8

https://admin.megacorp.ltd 1.3.3.7

https://api.megacorp.ltd 4.3.2.1

1

Identify security
issue present in
the target scope.

Obtain evidences
for each
vulnerability and, if
possible, develop a
working exploit.

Document, in a
clear and easy to
reproduce manner,
all procedures
used to replicate
the issue.

Recommend
mitigation factors
and fixes for each
defect indetified in
the analysis.

Provide context
with a real risk
scenario based on
realistic threat
model.

Report.

1 2 3 4 5 6

 PENETRATION TEST REPORT

4. Engagement Summary

The engagement was performed in a period of 10 business days with two security consultants, totaling an
effort of 20 consultant days. The web application penetration test commenced on April 11th, 2025 and
ended on April 22nd, 2025, finishing with the final version of this report. The calendar below illustrates the
allocated days by Cybe for this project.

All testing activities took place against the staging environment. The web applications and their underlying
infrastructure were analyzed with the assistance of automated scanning tools as well as subjected to
manual review.
All work was carried out remotely from the offices of Cybe Information Security.

@2025 CYBE - CONFIDENTIAL 5

Activity Calendar APRIL 2025

S M T W T F S

27 28 29 30 31 1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

1 2 3 4 5 6 7

 PENETRATION TEST REPORT

5. Methodology - Web Application Security Testing

Our security assessments follow a structured and organized methodology with the main objective of
identifying the largest possible number of vulnerabilities in a web application.

We work with a tailored approach based on industry-renowned methodologies such as OWASP and
OSSTMM, but we go above and beyond OWASP Top 10 and regular checklists which enables us to
discover and classify vulnerabilities that often fly under the radar of traditional security testing methods and
automated security scanners.

• Application Mapping
This phase consists in browsing through the application, clicking on every working link, filling in forms, and
activating existing functionalities (password recovery, file uploads, user registration, etc).
The objective of this step is to identify the attack surface of the application, to gain a better understanding of
its inner working, and to determine what are the main components, its architecture, programming
languages, frameworks, and technologies like back-end databases, Web services, APIs, and more.
• Functionality Mapping
Learning the application’s functionalities is key to achieving success in a penetration test. The goal of this
activity is to map all existing functionality and identify which ones are critical according to the business
context of the application. The results of this exercise will provide the necessary background and guidance
for focused security tests.
• OWASP Top 10 checks
Cybe performs tests based on the widely-adopted OWASP Top 10 checklist, using it as a reference to
identify and quantify the risk posed by common security vulnerabilities encountered in web application
security assessments.
• Cybe’s manual checks
We go beyond industry checklists and rely on the experience and technical expertise of our security
engineers to perform manual checks in order to discover vulnerabilities that are not commonly identified
during automated tests.

@2025 CYBE - CONFIDENTIAL 6

Web Application Security Testing

Application
Mapping

Functionality
Mapping

Manual Blaze
Tests

OWASP Top 10
Checks

Vulnerability
Analysis

Exploitation

Reporting

 PENETRATION TEST REPORT

• Exploitation
The process of exploitation leverages the vulnerabilities found throughout the engagement to violate
security assumptions an application might have. This step is specific to each different application and
system, depending on the vulnerabilities encountered and tests performed in the phases prior.
• Reporting
This is the project’s final phase, where all vulnerabilities discovered are documented based on evidence
collected for each issue. The report features an executive summary describing at a high level the impact of
the findings and the risk they bring to the organization. The report also includes all relevant technical details
discussing the process, tools, and techniques used during the assessment, along with the root causes of
each vulnerability and suggestions for remediation and risk mitigation.

@2025 CYBE - CONFIDENTIAL 7

 PENETRATION TEST REPORT

6. Executive Summary

MEGACORP Ltd. engaged Cybe Information Security for an application penetration test of their flagship
web platform. The system under scope offers a service for citizens to interact with numerous e-government
infrastructure solutions, such as construction permit requests, building tax management, and more.
The penetration test of the platform had as its main goal the identification and exploitation of the maximum
number of vulnerabilities in order to assess its security posture when faced against skilled and determined
attackers. Thus, the applied methodology attempted to enumerate all the cases of sensitive information
exposure and unauthorized access possibilities that would lead a would-be attacker into compromising the
application itself or its users.
This section summarizes the results of the application penetration testing assessment provided by Cybe
Information Security for MEGACORP Ltd. concerning the assessment of the client, web portal, manager
and API applications.

6.a. Vulnerable Surface
The applications presented a security posture considered insufficient given the amount of vulnerabilities
discovered, as well as their severity and the risk these issues could pose to the system and the data it
handles.
Its vulnerable surface was considered broad, with nine vulnerabilities, one of them classified as of critical
severity and four of high risk. When combined, these issues could jeopardize the security of the system and
undermine the confidence users have in the platform.
The chart below illustrates the severity x quantity of the issues detected:

The chart below illustrates the OWASP ratings:

@2025 CYBE - CONFIDENTIAL 8

 PENETRATION TEST REPORT

6.b. Main Threats
Cybe Information Security encountered several issues in the application, which may allow for the following
real-world scenarios to materialize:

• Takeover of user accounts
A serious security issue was found in the user update mechanism. The user could change another valid
user’s e-mail address and password in the system simply by guessing the predictable ID assigned to the
user in question. This was demonstrated by changing the e-mail address of another user to an attacker-
controlled address and then triggering a password reset. This leads to the takeover of the user account.
Since user IDs are predictable, this can lead to the mass takeover of user accounts across the
MEGACORP Portal.

• Database exposure via SQL injection attack
Testing revealed the presence of a SQL injection vulnerability in the MEGACORP Portal. This class of
security issue can affect the confidentiality and integrity of the underlying database. A successful attack can
compromise the records stored in the database, leading to its unintended exposure.

• Deletion of orders belonging to other users
Another issue related to weak access controls through the MEGACORP Portal, the penetration testing
discovered that users could delete orders belonging to other individuals simply by changing the ID of the
order to another order not owned by them. Given that order IDs are predictable, this can lead to the mass
deletion of orders and cause a severe impact on the platform.

6.c. Vulnerabilities Table
The following table summarizes the vulnerabilities found in the application, in line with CWE whenever
possible, presenting a reference regarding the impact of each vulnerability.

POINT TITLE CWE-ID CWE CATEGORY SEVERITY

1 Application prone to mass account
hljack vulnerability

CWE-285 Improper Authorization CRITICAL

2 Stored Cross Site Scripting (XSS) CWE-79 Improper Neutralization of Input
During Web Page Generation
(Cross-site Scripting)

HIGH

3 Application prone to blind SQL
Injection

CWE-89 Improper Neutralization of Special
Elements used in an SQL Command
(SQL Injection)

HIGH

4 Deletion of order requests of other
users

CWE-284 Improper Access Control HIGH

5 Account hijacking via password
reset Lin poisoning

CWE-20 Improper Input Validation HIGH

6 MEGACORP Portal vulnerable to
Server Side Request Forgery
(SSRF)

CWE-918 Server-Side Request Forgery (SSRF) MEDIUM

7 Bcrypt encrypted credentials being
sent as GET request and Pass-the-
Hash-like attack

CWE-294 Authentication Bypass by Capture-
replay

MEDIUM

8 Session cookie without secure flag
enabled

CWE-614 Sensitive Cookie in HTTPS Session
Without “Secure” Attribute

LOW

9 Email flood via password reset CWE-799 Improper Control of Interaction
Frequency

LOW

@2025 CYBE - CONFIDENTIAL 9

 PENETRATION TEST REPORT

7. Technical Summary

The present topic describes the assumptions, tests, and attack attempts that took place during the security
assessment of the application under the scope of testing.

First and foremost, all of the attack surfaces of the MEGACORP web application were mapped in order to
identify all of its possible attack vectors. During this time, the security engineers interacted with the available
features so that they can familiarize themselves with the application and thus identify attack paths and
possible points of vulnerable functionality.

After feature mapping and functionality enumeration, the security engineers focused on attack vectors that
may arise from an unauthenticated perspective, i.e., adversaries that do not have valid security credentials
for the MEGACORP application under the scope.

Focusing on attacks that can be conducted by authenticated users, the team attempted to identify attack
vectors that could negatively impact the system under the scope, thus assuming a malicious registered and
authorized user attacker/threat model. This phase is crucial in an attempt to uncover possible access
control & privilege escalation vulnerabilities, whereby a malicious user A is able to obtain and/or alter
sensitive data of a victim user B. The malicious user A either seeks to elevate its privileges horizontally
(victim user B possesses the very same privilege level as malicious user A) or vertically (victim user B
possesses an increased privilege level than malicious user A).

Thus, for both authenticated & unauthenticated threat models, the following tests attempted to uncover:
• Business Logic issues SQL
• NoSQL Injection issues
• Cross-site Scripting (XSS) issues – Reflected, Stored, DOM & Blind
• Bruteforce Attempts, Account Lockouts, and Username Enumerations
• Insecure Direct Object Reference (IDOR) – Access Control issues
• Privilege Escalations
• OS Command Injection issues
• Cross-Site Request Forgery (CSRF) issues
• Cross-Origin Resource Sharing Misconfigurations
• XML External Entity (XXE) issues
• Open Redirect issues
• Path fuzzing & Sensitive unprotected Directory/File identification
• Issues Local & Remote File Inclusions
• Local File Disclosure issues Server
• Client-side Template Injections
• Server Side Request Forgery (SSRF)
• Issues Outdated Software Components
• Insufficient Input Validation issues
• Security Misconfigurations
• JWT validation issues
• Cryptography Failures
• Insufficient Session Expiration
• File Upload issues

@2025 CYBE - CONFIDENTIAL 10

 PENETRATION TEST REPORT

8. Vulnerabilities

8.a. Application Prone To Mass Account Hijack Vulnerability

Description
The MEGACORP application allows citizens to manage multiple services online, such as enquiry of
construction permit, licenses, management of contracts and plans, commercial registration and more.

This application was prone to a serious vulnerability that could lead to mass account hijacking. The security
issue in question allows any user to change the e-mail address of an already registered account, effectively
taking over the account given the ability to later issue a password reset.

Below is the logged in user alan.turning@Cybeinfosec.com and the original request, showing the ID for this
user:

@2025 CYBE - CONFIDENTIAL 11

SEVERITY: CRITICAL CWE-ID: CWE-285 CVSS SCORE: 9.6

AFFECTED POINTS https://megacorp.ltd/Megacorp/User/EditUser (ID parameter)

OWASP TOP 10 A1 - Broken Access Control

 PENETRATION TEST REPORT

As can be seen, the ID 62570 belongs to the user alan.turing@Cybeinfosec.com.
However, when getting the same request and changing the ID to 62573 to an arbitrary email address (in this
case, an attacker controlled email), as can be seen below:

Means that the user with the ID 62573 had his or her email changed to mallory.Cybeinfosec@gmail.com
without any sort of interaction or consent.

@2025 CYBE - CONFIDENTIAL 12

 PENETRATION TEST REPORT

An adversary can now issue a password reset request to the newly hijacked email and then log in with the
user account:

To cause a mass account hijack, an adversary can cycle through different IDs and change their assigned
email addresses to attacker-controlled email accounts, where they can later recover the password by
means of “Forgot password” functionality.

Reference
• https://portswigger.net/web-security/access-control/idor
• https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
• https://cheatsheetseries.owasp.org/cheatsheets/
Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

Solution
Enforce correct access controls in the API endpoint when changing user’s passwords to make sure users
can only change their own credentials and nobody else’s.

@2025 CYBE - CONFIDENTIAL 13

https://portswigger.net/web-security/access-control/idor
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

 PENETRATION TEST REPORT

8.b. Stored Cross Site Scripting (XSS)

Description
Just like most classic attacks against web application, Cross Site Scripting (XSS) happens due to the lack
of sanitization of user-supplied input and improper encoding of the output. The objective of XSS is to inject
HTML/JavaScript code in the application, which will later be echoed back to the user and executed under
the context of the victim’s web browser.

Stored Cross-Site Scripting, also known as Persistent Cross-Site Scripting, is considered even more
dangerous than its Reflected counterpart because malicious code inserted by the attacker gets stored in the
back-end of the application. Thus, the only interaction needed is to browse to the affected functionality of
the application for the code to be executed in the browser.

The team performed a series of automated and manual tests to verify the presence of the vulnerability. The
assessment revealed the firstName parameter in the information created in the MEGACORP application,
but consumed as JSON by the endpoint CRMAjax/ ContactListByCustomerID:

@2025 CYBE - CONFIDENTIAL 14

SEVERITY: HIGH CWE-ID: CWE-79 CVSS SCORE: 8.9

AFFECTED POINTS https://megacorp.ltd/CRMAajax/ContactListbyCustomerID

OWASP TOP 10 A3 - Injection

 PENETRATION TEST REPORT

Several threat scenarios can be leveraged via this vulnerability, such as: dissemination of phishing
campaigns, capture of sensitive information, session hijacking, and more.

Reference
• https://owasp.org/www-community/attacks/xss/
• https://cwe.mitre.org/data/definitions/79.html

Solution
The general recommendation against injection attacks is to perform sanitization and input validation of
every user-supplied data that will be consumed and processed by the application. The steps of validation,
sanitization and escaping should happen both in client and server side, whenever possible.

In the specific case of Cross Site Scripting it is recommended to sanitize the input to avoid insertion of
HTML tags, like the characters “<” and “>” as well as their encoding variations. It’s also important to
remember that the output must be correctly escaped to their equivalent in HTML entities:
• Character " should be escaped to "
• Character ’ should be escaped to '
• Character & should be escaped to &
• Character < should be escaped to <
• Character > should be escaped to >

Modern web application frameworks supports different ways to perform output escaping and in many cases
provides adequate levels of protection against Cross-Site Scripting out of the box. Refer to the manual of
the framework used in the project, if appropriate, to learn how to leverage this security functionality.

@2025 CYBE - CONFIDENTIAL 15

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/data/definitions/79.html

 PENETRATION TEST REPORT

8.c. Application Prone To Blind SQL Injection

Description
The MEGACORP application allows citizens to manage multiple services online, such as enquiry of
construction permit, licenses, management of contracts and plans, commercial registration and more. It
seems like it is an old version of the Partner application.

This application was prone to a blind SQL injection attack in the columnName parameter in the
/ar/ajax/tableaction endpoint.

SQL injection is a vulnerability that occurs when user-supplied input is not properly sanitized when
constructing SQL queries and is directly sent to the database without any sort of validation. SQL injection
attacks are commonly used to gain unauthorized access to data stored in the back-end database.

Blind SQL injection is a variation of the classic SQL injection attack. The main difference between them lies
in the fact that during the execution of a blind SQL injection the application does not exhibit any error
message originating from the database.

The query results are done via inferencing. This method consists in sending the application a series of
boolean queries and observe the responses in order to determine the existence of a given piece of
information.

In order to verify the presence of the vulnerability, the payload WAITFOR DELAY ‘0:0:30’— was used; this
makes the database “sleep” for 30 seconds if the attack is successful, as can be seen below:

@2025 CYBE - CONFIDENTIAL 16

SEVERITY: HIGH CWE-ID: CWE-89 CVSS SCORE: 8.2

AFFECTED POINTS https://megacorp.ltd/ar/ajax/tableaction (columName parameter)

OWASP TOP 10 A3 - Injection

 PENETRATION TEST REPORT

Another proof of the presence of the vulnerability was using master.dbo.xp_dirtree to attempt to list the
directories in a remote Windows share. The share had a DNS controlled by the team and we could see
DNS requests coming from MEGACORP’s servers, as per the screenshot above.
The SQL injection in question is blind and more difficult to exploit than others, and in the duration of the
assessment it was not possible to fully exploit the vulnerability, but its presence is more than confirmed with
two different approaches.

If successfully exploited, the vulnerability is believed it can be used to extract the Bcrypt password hashes
and used in the pass-the-hash attacks described later in this report, as well as altering and deleting
information from the database.

Reference
• https://owasp.org/www-community/attacks/Blind_SQL_Injection
• https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-
Input_Validation_Testing/05-Testing_for_SQL_Injection
• https://portswigger.net/web-security/sql-injection/blind

Solution
The general recommendation against injection attacks is to perform sanitization and input validation any
user-supplied data that will be consumed and processed by the application, especially in database queries.
This validation and sanitization steps should happen both in client and server side.
In the specific case of SQL injection vulnerabilities, the recommendation is to move away from constructing
dynamic queries with user-provided input and instead use prepared statements, thereby separating code
(the original intended query itself) from data (user-supplied).

@2025 CYBE - CONFIDENTIAL 17

https://owasp.org/www-community/attacks/Blind_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://portswigger.net/web-security/sql-injection/blind

 PENETRATION TEST REPORT

8.d. Deletion Of Order Requests Of Other Users

Description
The application permits functionalities such as application for creation of a new industrial facility.
The team spent large portions of the assessment looking for issues related to improper access controls
where a user could interfere or have unauthorized access to other user’s data.
The problem was found in the order functionality. Below we can see the Trading User B has an order
pending for approval:

@2025 CYBE - CONFIDENTIAL 18

SEVERITY: HIGH CWE-ID: CWE-284 CVSS SCORE: 8.1

AFFECTED POINTS https://megacorp.ltd/Megacorp/MegacorpOrder

OWASP TOP 10 A1 - Broken Access Control

 PENETRATION TEST REPORT

@2025 CYBE - CONFIDENTIAL 19

 PENETRATION TEST REPORT

When clicking on user’s Test A order, we can see what the request looks like:

We then replace the megacorpOrderID from 207563 (the User Test A’s own order ID) to the ID belonging to
the user B, with ID 207565:

@2025 CYBE - CONFIDENTIAL 20

 PENETRATION TEST REPORT

This absence of access control checks may lead to deleting orders that do not belong to them, causing loss
of information.
By cycling through all possible IDs, this issue can affect all users in the platform.

Reference
• https://portswigger.net/web-security/access-control/idor
• https://www.oreilly.com/library/view/http-the-definitive/1565925092/ch12s03.html
• https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control

Solution
To solve the mentioned problem, Cybe recommend MEGACORP Ltd. to conduct a survey of application
access control requirements and document them in the application security policy, as it is extremely
important that each user can only access his own private information.

8.e. Account Hijacking Via Password Reset Link Poisoning

Description
Host header poisoning attack happens when the header sent by the user is not validated in the server side.

It was possible to change the content of the "host” HTTP header when sending a request, forcing the
application to potentially interact with another domain.
This vector enables other types of attacks depending on the ecosystem surrounding the application, such
as: cache poisoning, password reset poisoning, injections of malicious code into the server and others.

During the tests the team manipulated the “Host” header of the password reset functionality, forcing the
application to send a password redefinition link containing an attacker-controlled host (in this case,
managed.sa), as illustrated in the images below:

@2025 CYBE - CONFIDENTIAL 21

SEVERITY: HIGH CWE-ID: CWE-20 CVSS SCORE: 8.1

AFFECTED POINTS https://megacorp.ltd/user/ForgetPasswordChoice (Host HTTP header parameter)

OWASP TOP 10 A3 - Injection

https://portswigger.net/web-security/access-control/idor
https://www.oreilly.com/library/view/http-the-definitive/1565925092/ch12s03.html
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control

 PENETRATION TEST REPORT

The victim then receives an email message containing a link to redefine the password. However, when the
victim clicks the link the attacker will get the password reset token, since the victim is clicking in the link
containing a malicious host instead of the original one as the images below illustrate:

@2025 CYBE - CONFIDENTIAL 22

 PENETRATION TEST REPORT

With the password reset token sent to the attacker domain, the adversary only needs to change the
malicious host to the original one, gaining full control over the victim’s account.
Then the password was success fully changed, as seen in the screenshot below:

Reference
• https://www.acunetix.com/blog/articles/password-reset-poisoning/
• https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-
Input_Validation_Testing/17-Testing_for_Host_Header_Injection

Solution
We recommend that the value of the Host header shouldn’t be used by the application to generate the
password reset link. If it must be used, it is very important that a very strict whitelist is made for the
application. It is also important to implement mechanisms that perform proper validation of the request,
whether it came from the original target host or not.

@2025 CYBE - CONFIDENTIAL 23

https://www.acunetix.com/blog/articles/password-reset-poisoning/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/17-Testing_for_Host_Header_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/17-Testing_for_Host_Header_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/17-Testing_for_Host_Header_Injection

 PENETRATION TEST REPORT

8.f. MEGACORP Portal Vulnerable To Server Side Request Forgery (SSRF)

Description
Server Side Request Forgery (SSRF) is an attack that can abuse the functionality of the application to
access resources on its behalf. It works when an attacker-controlled URL, for example, is passed to the
application vulnerable to SSRF and it performs, for instance, a request to fetch the resource located in the
user-supplied URL.

Through SSRF an adversary can access services and systems behind firewalls as well as abuse this issue
to launch port scan attacks against internal

The example below shows a request to http://www.ipinfo.io a website that returns the source IP address of
the request. This website was chosen in order to illustrate the fact the source IP requesting the resource is
indeed the IP of the server where MEGACORP Portal is running:

Request to ipinfo.io:

@2025 CYBE - CONFIDENTIAL 24

SEVERITY: MEDIUM CWE-ID: CWE-918 CVSS SCORE: 5.4

AFFECTED POINTS https://megacorp.ltd/get-lines.php?max=100&url=

OWASP TOP 10 A10 - Server-Side Request Forgery

 PENETRATION TEST REPORT

The images below illustrates a request to another external host:

It is important to highlight that the vulnerability was explored though an unauthenticated endpoint.

Cybe attempted to fetch the AWS environment metadata information endpoint in http://169.254.169.254 but
was unable to receive a response that leaked secret information. This was due to the fact the application
was running inside a Docker container, which ultimately served as a safety net to mitigate the impact this
attack could have.

Depending on the environment more sophisticated attack scenarios, such as port scanning the internal
network, fetching data from an internal unprotected services like Redis, memcache, or data from pages
without authentication could be possible.
Despite the mitigations mentioned earlier, Cybe decided to rank this issue as medium risk because the
issue can be exploited by unauthenticated users.

Reference
• https://www.owasp.org/index.php/Server_Side_Request_Forgery
• https://portswigger.net/web-security/ssrf
• https://cwe.mitre.org/data/definitions/918.html

Solution
The general recommendation against SSRF is to implement a whitelist of trusted resources that can be
fetched by the application. Do not rely on black lists because they are usually prone to bypasses.
Additionally, disable unused schemas such as file://, gopher:// or "ftp:// ":ftp:// if your application only uses
http:// or or or https://....

Moreover, it is advisable to consider limiting this functionality to authenticated users only.

@2025 CYBE - CONFIDENTIAL 25

http://169.254.169.254
https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://portswigger.net/web-security/ssrf
https://cwe.mitre.org/data/definitions/918.html

 PENETRATION TEST REPORT

8.g. Bcrypt Encrypted Credentials Being Sent As GET Request And Pass-the-Hash- like Attack

Description
In the URL /ar/home/index and /ar/modelfactorie/viewlist, when clicking on “The demand” on “Add new”
button, a request is sent to https://megacorp.ltd to an endpoint known as “Old- Portal_Login”.

This behavior is considered insecure for two reasons. The first issue with this approach is regarding the way
the arguments are being sent to the web server, via GET requests. HTTP requests of the verb GET are
known for logging the requests on proxies, web server logs and browser history.

The second issue is a Pass-the-Hash-like attack against MEGACORP’s application. Just by simply
browsing the URL https://megacorp.ltd/auth/Old-Portal_Login?
email=mallory.Cybeinfosec@gmail.com&password=$2a$12$op9xfYM//48TZof1ZQ4q/
AXK8UffXXXXXXXXXXXXXX.CChuR45wnGo1xD the user gets logged in:

@2025 CYBE - CONFIDENTIAL 26

SEVERITY: MEDIUM CWE-ID: CWE-294 CVSS SCORE:

AFFECTED POINTS https://megacorp.ltd/ar/modelfactorie/viewlist

OWASP TOP 10 A7 - Identification and Authentication Failures

https://megacorp.ltd
https://megacorp.ltd/auth/Old-Portal_Login?email=mallory.Cybeinfosec@gmail.com&password=$2a$12$op9xfYM//48TZof1ZQ4q/AXK8UffXXXXXXXXXXXXXX.CChuR45wnGo1xD
https://megacorp.ltd/auth/Old-Portal_Login?email=mallory.Cybeinfosec@gmail.com&password=$2a$12$op9xfYM//48TZof1ZQ4q/AXK8UffXXXXXXXXXXXXXX.CChuR45wnGo1xD
https://megacorp.ltd/auth/Old-Portal_Login?email=mallory.Cybeinfosec@gmail.com&password=$2a$12$op9xfYM//48TZof1ZQ4q/AXK8UffXXXXXXXXXXXXXX.CChuR45wnGo1xD

 PENETRATION TEST REPORT

This behavior means that if an attacker breached the database, there would not even be the need to waste
resources to crack the Bcrypt hashes (known for being resistant to password cracking), as they could be
simply relayed to the “Old Login” functionality, which would log them in.

The impact of this issue is twofold: one is regarding the logging of the Bcrypt hash in different parts,
whereas the second one is related to the fact the mere possession of the password hash, with no need to
spend computing power cracking them, would be enough to log into the user’s session.

Reference
• https://owasp.org/www-community/vulnerabilities/Information_exposure_through_quer y_strings_in_url
• https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
• https://cwe.mitre.org/data/definitions/598.html
• https://searchsecurity.techtarget.com/definition/pass-the-hash-attack

Solution
If the business permits, it is advisable to remove this functionality altogether or implement it in a way using
POST request instead to mitigate part of the risk brought by this issue. To prevent altogether the Pass-the-
Hash attack, a review of the design of the application might be needed.

@2025 CYBE - CONFIDENTIAL 27

https://owasp.org/www-community/vulnerabilities/Information_exposure_through_quer
https://owasp.org/www-project-top-ten/2017/A3_2017-Sensitive_Data_Exposure
https://cwe.mitre.org/data/definitions/598.html
https://searchsecurity.techtarget.com/definition/pass-the-hash-attack

 PENETRATION TEST REPORT

8.h. Session Cookie Without Secure Flag Enabled

Description
The attribute secure is an option that can be set in the cookie with the intent to prevent these session
tokens to traverse the network over non-HTTPS channels; that is, the cookie can be only sent to the
application when an encrypted HTTPS connection is established between the browser and the application,
thus avoiding session hijacking attacks via eavesdropping and/or Man-in-the-Middle (MITM) attacks.

The image below shows the lack of the attribute secure in the session cookie:

Reference
• https://owasp.org/www-community/controls/SecureCookieAttribute
• https://portswigger.net/kb/issues/00500200_tls-cookie-without-secure-flag-set
• https://resources.infosecinstitute.com/securing-cookies-httponly-secure-flags/

Solution
In order to solve the mentioned problem, reconfigure the session management functionality of the
application so session cookies can have the flag secure enabled.

@2025 CYBE - CONFIDENTIAL 28

SEVERITY: LOW CWE-ID: CWE-614 CVSS SCORE: 3.7

AFFECTED POINTS https://megacorp.ltd

OWASP TOP 10 A5 - Security Misconfiguration

https://owasp.org/www-community/controls/SecureCookieAttribute
https://portswigger.net/kb/issues/00500200_tls-cookie-without-secure-flag-set
https://resources.infosecinstitute.com/securing-cookies-httponly-secure-flags/

 PENETRATION TEST REPORT

8.i. Email Flood Via Password Reset

Description
It was noticed the application does not implement CAPTCHA, API rate limit or other mechanisms that
prevents automated request for password reset.

As proof of concept, the following image illustrates an automated attack that sends requests to reset a
user’s password multiple times:

This behavior could be a minor annoyance if a malicious user decides to send multiple requests to flood
another user’s inbox.

Reference
• http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
• http://projects.webappsec.org/w/page/13246915/Brute%20Force

Solution
An efficient countermeasure against automated attacks is to implement a CAPTCHA. Google’s reCaptcha is
a popular and very robust solution that can be used to protect an application against such attacks.
Also, consider implementing rate limiting to prevent such automated requests.

@2025 CYBE - CONFIDENTIAL 29

SEVERITY: LOW CWE-ID: CWE-799 CVSS SCORE: 3.5

AFFECTED POINTS https://megacorp.ltd/user/ForgotPasswordChoice

OWASP TOP 10 A5 - Security Misconfiguration

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246915/Brute%20Force

 PENETRATION TEST REPORT

9. Conclusion

The ultimate goal of a security assessment is to bring the opportunity to better illustrate the risk of an
organization and help make it understand and validate its security posture against potential threats to its
business.

The exercise showed that the security posture of the applications could be improved as they contain a
handful of security vulnerabilities. The most severe issues were related to the absence of access control
verification in key areas, such as in the user update mechanism – which could be exploited by a user to
change the email address of arbitrary users. This issue could be easily used to take over all accounts in the
application due to the ease of exploitation and predictability of the user IDs.

Additionally, issues related to the absence of sanitization of user input combined with an incorrect way to
craft SQL queries, could lead to a scenario of blind SQL injection and compromise of the database. Another
noteworthy problem in the application was the lack of sanitization and output escaping, as described in the
stored cross-site scripting vulnerability.

The application was also prone to issues related to access control checks, where a user could visualize
tickets belonging to other users, where they originally did not have access to.

With that in mind, Cybe provide the following recommendations that we believe should be adopted as next
steps to further enhance the security posture of the organization:

• Immediately fix the high severity issues reported in this document;
• Understand the risky usage of crafting SQL queries from user-supplied input without using the correct

parametrization;
• Consider actively reviewing access control checks in key areas of the application to prevent IDORs and

privilege escalation problems;
• Do not trust user-supplied input prior sanitization, especially when using the input in security-important

decisions;
• Perform continuous patch management of the infrastructure and continuous scanning of application

vulnerabilities;

Cybe Information Security would like to thank the team of MEGACORP Ltd. for their support and assistance
during the entire engagement.

@2025 CYBE - CONFIDENTIAL 30

 PENETRATION TEST REPORT

10. Appendix A - Vulnerability Criteria Classification

Below are the risk rating criteria used to classify the vulnerabilities discussed in this report:

@2025 CYBE - CONFIDENTIAL 31

SEVERITY DESCRIPTION

CRITICAL This leads to the compromise of the system and the data it handles. Can be exploited by an unskilled
attacker using publicly available tools and exploits. Must be addressed immediately.

HIGH Usually leads to the compromise of the system and the data it handles.

MEDIUM Does not lead to the immediate compromise of the system but when chained with other issues can
bring serious security risks. Nevertheless, it is advisable to fix them accordingly.

LOW Do not pose an immediate risk and even when chained with other vulnerabilities are less likely to
cause serious impact.

INFO Does not pose an immediate risk, but requires continuous surveillance so that it doesn’t become a
liability through ill-use or future modifications in the system.

 PENETRATION TEST REPORT

11. Appendix B - Remediation Priority Suggestion

For this assessment it was defined an order of prioritization for remediation of the vulnerabilities discovered.
The criteria used to define this order took into consideration the severity and the perceived effort required to
fix the issues.
The following table lists the order in which the vulnerabilities should be fixed:

@2025 CYBE - CONFIDENTIAL 32

SEVERITY DESCRIPTION

HIGH Deletion of order requests of other users

HIGH Application prone to blind SQL injection

CRITICAL Application prone to mass account hijack vulnerability

HIGH Account hijacking via password reset link poisoning

HIGH Stored Cross Site Scripting (XSS)

MEDIUM MEGACORP Portal vulnerable to Server Side Request Forgery (SSRF)

MEDIUM Bcrypt encrypted credentials being sent as GET request and Pass-the-Hash-like attack

LOW Session cookie without secure flag enabled

LOW Email flood via password reset

 PENETRATION TEST REPORT

@2025 CYBE - CONFIDENTIAL 33

